Extensions 1→N→G→Q→1 with N=C2 and Q=C32×C22⋊C4

Direct product G=N×Q with N=C2 and Q=C32×C22⋊C4
dρLabelID
C22⋊C4×C3×C6144C2^2:C4xC3xC6288,812


Non-split extensions G=N.Q with N=C2 and Q=C32×C22⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C32×C22⋊C4) = C32×C2.C42central extension (φ=1)288C2.1(C3^2xC2^2:C4)288,313
C2.2(C32×C22⋊C4) = C32×C22⋊C8central extension (φ=1)144C2.2(C3^2xC2^2:C4)288,316
C2.3(C32×C22⋊C4) = C32×C23⋊C4central stem extension (φ=1)72C2.3(C3^2xC2^2:C4)288,317
C2.4(C32×C22⋊C4) = C32×C4.D4central stem extension (φ=1)72C2.4(C3^2xC2^2:C4)288,318
C2.5(C32×C22⋊C4) = C32×C4.10D4central stem extension (φ=1)144C2.5(C3^2xC2^2:C4)288,319
C2.6(C32×C22⋊C4) = C32×D4⋊C4central stem extension (φ=1)144C2.6(C3^2xC2^2:C4)288,320
C2.7(C32×C22⋊C4) = C32×Q8⋊C4central stem extension (φ=1)288C2.7(C3^2xC2^2:C4)288,321
C2.8(C32×C22⋊C4) = C32×C4≀C2central stem extension (φ=1)72C2.8(C3^2xC2^2:C4)288,322

׿
×
𝔽